Stop downtime before it happens. The open-source standard for IIoT anomaly detection.
Enterprise-grade features that just work. No configuration hell.
Isolation Forest Algorithm
Automatically detect anomalies in real-time sensor data with machine learning. No manual thresholding required.
Stream data from thousands of devices with sub-second latency.
Enterprise-grade security with JWT auth and role-based access control.
FastAPI backend with async Python. Powered by scikit-learn for ML inference. Deploy anywhere with Docker.
1from sklearn.ensemble import IsolationForest2import numpy as np3 4class AnomalyDetector:5 def __init__(self, contamination=0.1):6 self.model = IsolationForest(7 contamination=contamination,8 random_state=42,9 n_estimators=10010 )11 12 def train(self, X: np.ndarray):13 """Train the anomaly detection model"""14 self.model.fit(X)15 return self16 17 def predict(self, X: np.ndarray):18 """Predict anomalies (-1) or normal (1)"""19 predictions = self.model.predict(X)20 scores = self.model.score_samples(X)21 22 return {23 'anomalies': predictions == -1,24 'scores': scores,25 'confidence': np.abs(scores)26 }27 28# Real-time inference29detector = AnomalyDetector(contamination=0.05)30result = detector.predict(sensor_data)31 Powered by Industry-Leading Technologies
Join hundreds of factories already using Smart Energy Guardien.